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SECTION I
INTRODUCTION
Interlaminar stresses exist in the neighborhood of the free edges of laminated plates
subjected to in-plane loads. Since the time their existence was established, various numerical
and analytical techniques have been used to study the nature of and the factors that influence the
. interlaminar stresses [1 thru 43]. These studies indicated that the interlaminar normal (peeling)
stress is the dominant cause of delamination.

Pagano and Pipes [9] developed an approximate expression for the maximum peeling
stress in terms of the transverse in-plane stresses in the plies based upon the classical
lamination theory. In their formulation, the peeling stresses were maximized when the
delamination moment (moment of transverse in-plane stresses about a point in the plane of
potential delamination) is maximized. Based on examination of the expression for the
delamination moment, they stated that a large Poisson's ratio mismatch tends to magnify the
transverse stresses and the resulting delamination moment. They did not include the effect of
accompanying changes of elastic properties. Orringer (28] used the maximum Poisson's ratio
mismatch concept to design a delaminating specimen to measure the peeling stress. In addition,
he conducted numerical studies. In these studies for a given laminate, he varied the ply angles
and computed the maximum peeling stress per unit axial strain. He observed that the angle
maximizing Poisson's ratio mismatch did not agree with the angle obtained from the numerical
studies. Orringer ignored this discrepancy in favor of the design based upon the Poisson's
ratio mismatch. In both studies a distribution of the peeling stresses based upon earlier
experience was assumed. Sandhu [44] on the basis of experimental data suggested that no
distribution pattern of the peeling stresses needed to be assumed. A simple comparison of
delaminating tendency of the laminates based upon the delaminating moment per unit axial
stresss was more than adequate.

In the effort reported herein the phenomena of delamination is examined in detail. The
laminate system selected is angle plies with transverse plies placed at mid thickness of the
laminates. The laminates are subjected to the following constraints:

a. Uncracked transverse plies and the laminates subjected to force loading.
b. Uncracked transverse plies and the laminates subjected to displacement loading,.

c. Cracked transverse plies and the laminates subjected to force loading.
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d. Cracked transverse plies and the laminates subjected to displacement loading.

e. Maximum Poisson's ratio mismatch.

P A

Section II contains derivations and related analytical studies, Section III describes experiments
conducted and Section IV summarizes the results and conclusions.
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SECTIONII
ANALYTICAL INVESTIGATIONS

The objective of this study is to define a measure of the edge delaminating tendency of
[(8/-0)y/ 90, /(-6/6)y,] laminates subjected to uniaxial loading, where m and n are
integers. To meet the stated objective both analytical and experimental investigations were
conducted. The analytical studies contained in this Section include:

a. Ply constitutive relations.

b. Stress resultants (for cracked and uncracked 90-degree plies).

c. Transverse stresses (for cracked and uncracked 90-degree plies )

d. Equilibrium conditions.

e. Delaminating moment (DM) and delaminating moment coefficient (DMC).

f. Delamination initiation criteria for cracked and uncracked 90-degree plies.

(i) Maximizing DMC for force and displacement loadings.
(ii) Maximizing Poisson's ratio mismatch of angle plies and 90-degree plies.
(iii) Maximizing Poisson's ratio of the laminates.

g. Numerical evaluation.

h. Analytical evaluation of (g) using finite element analysis.

i. Residual thermal curing stresses.

Mechanical and thermal loads impose different constraints upon the laminates. For this reason,
both types of loads were applied separately. To begin with laminates consisting of given sets
of m and n plies were subjected to uniaxial loading. Using a delamination initiation criterion,
ply angles maximizing the delamination tendency of these laminates were determined. These
laminates were then evaluated for thermal effects.

L. Ply Constitutive Relati

Consider a single ply of fiber-reinforced composite material oriented at an angle 0 with
respect to a reference direction (Figure 1). Let the material axes (x,x;) coincide and be
perpendicular to the fiber direction. Assuming that the ply exhibits linearly thermoelastic

behavior, the constitutive relations in the material coordinates system can be written as
€ =Sij0j+(liT

or
Sijo; =(e;-o4T) L,)=1,2,6 (1)
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where Oj» &, O, T, and Sij are the stresses, the engineering strains, linear coefficients of )

thermal expansion, the temperature increment and the elastic compliances. R

The stresses in Equation 1 are given by N

c;=Cj(ej-0;T) ,j=1,2,6 @) N

The nonzero elastic stiffnesses in Equation 2 are given by X
Chi=En/(12k21)

Cp2 =Epf(1-4 p 21) :
Cn=tnCpn=u2nCy N
Cos =G12 3) N
where Ejy, Es, Gpj, and 1y, are the longitudinal Young's modulus, transverse Young's
modulus, longitudinal shear modulus and major Poisson's ratio, respectively. The constitutive :
relations in reference coordinate system (x,y) are given by .»
6x |CO1 COp COgflex-ayT
Oyl= C921 Cezz Ce% ey-ay'l‘ ._
o] |CO% C8%; CO|les-agT (4) -
where C9;; = C9;; and
C,=U;+Ujcos (28) +Ujcos (40) N
(8, =Uy-Ujcos (46) :
C8y = U; - Uy cos (28 ) + Us cos (46) 3
(9 =-0.5U,sin(26)- Ujsin(40) ‘:
C9% =- 0.5 U, sin (20 ) + Uy sin (46) g
CY6 = Us - U3 cos (48) &) &
where the elastic constant invariants U; ( Reference 45 ) are given by ]
Uy = (3Cyy +3Cy + 2Cyp + 4Ces ) /8 ]
Uz =(Cy1-Cy2)/2 =
U3 =(C11+Cy-2C3-4Ce6)/8 K
Uy =(Cyy +Cyy +6Cyp - 4Ce6 ) / 8 N
Us =(Cy1 +Cp-2C - 4Ce ) / 8 (6) X
and E
ay, =05(a;+a,7)+05(a;-a,)cos(20) ;¢
oy =05(a;+ay)- 05(a;-ap)cos(20) ::?';
o, =05(0;-0ay)sin(20) (7) $_~
he
& Stress Resultants '
Shear coupling terms of [( 0/ - 8)/ 90,, /( -8 / 8 ),,,] laminates are given by E"
4 .

>
.




C96=C%; =-C9y5 =-CH
COy6 = COgp = - C8y5 = - C-6¢,
C%0gy = C0;¢ = CNypq = CHg, =0

'l g e o e e s

‘d

2.1 Stress resultants (uncracked 90 plies )
. Applying the above equations and Equation 4, stress resultants for [( 0 / - 8),/ 90, /( -0/
0 )] 1aminates of uniform ply thickness t with uncracked 90-degree plies are given by
Ngy/t = [ 2m C8; +2m C9; + n C¥g | e,
+(2m C8; + 2m C8, +n CHg3 | ¢y
+] 2m COg + 2m COg6 + n C0¢q ] €
: =[2m COgg + 2m C95 + n CHgq | e
A =4 € 8)
: where (using Equation 5)

Ag =4m[Us-U3zcos (40)]+n(Us-Uj3) 9
From Equation 8 we find that Nxy =0, if e (= 0 and vice versa.
N/t =[2m C9; +2m C9;; +n C%, Je,
+{2m ¥, +2m COy, +n CHys | ey
+2m O+ 2m C9y5+n CHy¢ ] ¢
=Aie +hy ey 10)
. where, using Equation 5,
. Ay =4m [ U+ Upcos (20 )+ Uscos (46) ]
+n[U;-Uy+Us] 11
Ay =4m[U4-Ujzcos(46)]+n[Uy-U;] (12)
Ny/t =[2m C8; +2m C0y; + n C%0y J e,
+ 2m CO% + 2m C8y3 + n CN0py J ¢,
+ 2m C8%g + 2m C8¢4 + n CH0x¢ | ¢
=hyeg+Aje, (13)
where, using Equation 5,
\ Ay =4m | U;-Upcos (20)+ Uycos (40) ]
. . +n{U; +Uy+ Uy (14)

2.2 Stress resultants ( cracked 90 plies )
In the case of cracked plies, it is assumed that
Cp=Ci2=Ce6=0
and C; is not equal to zero. 1
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Consequently ,

C%0g6 = C30y = C0y3 =0
CHy=Eyy

The stress resultants for [( 8 / - 8)g,/ 90, /( -0 /8 ),,] with cracked 90-degree plies are given by

chy/l = l.c4 €
Ne/t =2 ey + A% ey

Ncy/t = )\.cz Cx + 1C3 Cy (15)
where

Ay =4m [ U; + Uycos (20) + Uz cos (46)]

ASy =4m [ Uy - Uy cos (46)]

A3 =4m[U; - Ujcos (20) + Uz cos (40)) +n Cy,

Ay =4m{ Ug - U3 cos (46)] (16)
3. Equilibrium Condi

For both uncracked and uncracked 90-degree plies the uniaxial loading of [( 8 /- 8),/

90, /(-6 / 8 )p,] laminates implies that
Nyy = N6y =Ny =N¢ =¢5=0
and N,, N¢,, ¢,, and e, are not zero.

3.1 Uncracked 90 plies
Stress resultants for uncracked 90-degree plies are given by
Ny =(Aex +Aye )t
Ny =(12cx+l3cy)t=0
Equations 17 yieid

€y -(136),)/12
=-Nx[l3/(122-k|)»3)l/l

Cy=le)\.2/()\.22-K|}\.3)'/l

3.2 Cracked 90 plies
Stress resultants for cracked 90-degree plies are given by
NE, = (AS e + Qe )t
Ny = (A e, + A3, )1=0
Equations 19 yield

cx '()\cgcy)/)scz

- NS [ RS/ (A2 - A€y ACy)] /1t

6
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ey = NC [ A/ (RG2 - A¢) Ac3)] /t (20)

4. Transverse Stresses ( Gy.)

Using Equation 4 and e =0, transverse stresses ( Oy ) are given by

Gey = C9 12€x + C922 Cy (21)

The format of transverse stresses depends upon the condition of 90-degree plies, i.e., whether

90-degree plies are uncracked or cracked.

4.1 Uncracked 90 plies

Using Equations 17 and 18, transverse stresses in terms of applied axial loads N, and e,

for uncracked 90-degree plies are given by

and

respectively, where

and

0% =- Ny [A3C01- R Oy J /[ (A2 A 23)) (22)
Gey =€x l )\3 C612-12 C922]/>\-3 (23)

A2 =[(4m+n)Us-nU3)2-
8mUj3([(4m+n) Uy -nUs3|cos (40)+
16m?2 U32 cos? (460) (24)
MA3=[(4m+n)U; +nU3]2-n2U,2-
16m2 [ U52 cos? (20 ) - U32 cos2 ( 40)] -
8mn U,2 cos (20 ) +

8mUjz{(4m+n)U,;+nUj]cos(46) 25

Ap2-A A3 =B{+Bjcos(20)+Bycos(49) (26)
By ={(d4m+n)Us-nU32-[(4m+n)U; +nU; |2

+(n? +8m2) U,? (27N

B; =- 8mn U,? (28)

By =1 8m2 U2 8m Uy (4m+n)( Uy + U;p)l (29)

A3CO, =[(4m+n)Uy+n(Uy+Uy) | U;g-

4m Uy Uy cos (20) -

[(dm+n)U;+n( U+ Uy)-dm Uy | x

Ujcos (40)+dm Us Uycos (20)cos ( 46

4m U2 cos? (40) 3
Ay Oy =[(dm+n) Uy n Uy U,

Am +n ) Uy -n U ] Uscon(20) +

[((dm+n) Uy -nUy dmU [ Ujcone 49+

7

= % %



4m Uy Uz cos (20 ) cos (40) -
4m U42 cos2 (40) (31)
A3 C® 5 -4y CByy =By +Bscos (20 ) + Bgcos (40) (32)
and
By =n[U;U3+UpUs+U3zU4] (33)
Bs=n[Us-U3]U, (34)
Bg=-n[U; +Up+U3] (35)
A3 =By + Bgcos(26) + Bgcos (40) (36)
By ={(4m+n)U; +n (U +Ujz)] 37
Bg =-4m U, (38)
Bg =4m U3 (39)
Using Equations 24 thru 39, Equations 22 and 23 become
cey =-N,Fi it (40)
o =€, Gy (41)
where
Fi; =[ B4+ Bgcos (20) + Bgcos (46)] /
[B; +Bycos (20) + Bjcos (40)] 42)
G, =[ B4 +Bgcos (20) + Bgcos (46)] /
[ B;+Bgcos (20) + Bg cos (40 )] (43)
4.2 Cracked 90 plies

Using Equations 19 and 20 transverse stresses in terms of applied axial loads N¢, and e,

for cracked 90 degree plies are given by
09, = - N& [ A3 COy5 -2 C8yy 1/

[ € (A2 -AC) ACy)] (44)
and
o® y = e, [ A%y Celz - AE, Cezz /A%y 45
respectively, and where
ACy2 -A€) ACq3 = BE +B¢; cos (20 ) + BS3 cos (40) (46)
Ay (85 - A5 C8yy = B¢, + BC5 cos (46) (47)
ACy = B + B¢ cos (20 ) + B¢gcos (460) (48)
B¢y = 16m2 (Ug2- U2+ U3%/2)-4mn U, C, (49)
B¢ =-4mn U, Cy, (50)
B¢y =-[16m2(2U3Us+2U, Uy-Uy2/2)+
8
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4mn U3 Cn (51)
B¢ =nCy Uy (52)
B¢s=-nCy U (53)
BS = 4m U; +n Cy, (54)
B¢; =-4m U, (55)
B¢g =4m Uy (56)

) Using Equations 46 thru 56, Equations 44 and 45 become
O‘ey=~chFC1/I (57)
od y = €6 G% (58)
where

F¢; =[ B¢ + BC5cos (40)]/

[ B¢ +B¢; cos (20 ) + BC3 cos (40 )] (59)
G =[ B¢ + B%5cos (40)]/

[ B¢ +B€7 cos (28 ) + B¢g cos (40 )] (60)

inati nt (DM) an minating Momen fficient (DM

In the [(O/- 0)n/ 90, /(- 0/ )] laminates subjected to the uniaxial loading, the stress
resultant, Ny, is zero, i.e.,
4m o8y +n o, =0
or 090y= 4m oey/n 61
where o9 = Stress in 0 plies
and 0%, = Stress in 90-degree plies
These c9°y and 0'9y transverse stresses form a delaminating moment resisted by a moment

formed by peeling stresses. This delaminating moment, DM, at the mid surface of the
laminates is given by
DM =[2mt(mt+nt/2)-(4m/n)(nt/2)(nt/4)]cd
=m(4m+n) (12/2)08, (62)

To evaluate the effects of the delaminating moment, DM, upon the peeling stress (g,),
finite element and finite difference techniques can be used. Both the techniques are expensive
in time and effort for preliminary investigations. For initial studies an approximate technique is
desirable. Such approximate assessment of the effects is feasible using the approaches of

References 9 and 44. In one approach (Reference 9), a distribution (based upon experience) of

peeling stress is assumed and the resulting moment calculated. Using oey from one of

9




Equations 40, 41, 57, and 58, this moment is equated to DM of Equation 62 to obtain an
explicit expression for the peeling stress G, in terms of elastic constants and loading.

The other approach uses directly DM of Equation 62 and requires no distribution
assumption of the peeling stress (Reference 44). In this technique, the rate change of DM (not
the magnitude) with respect to the average axial stress G, or strain e, defined as the
delaminating moment coefficient (DMC) is used. The delaminating moment coefficients based

upon the axial stress and the axial strain are respectively given by

DMCG; = DM/G,=m(4m+n)2(12/2) (0% ,0,) (63)

]

DMC,

Equation 63 was used in Reference 44 to differentiate delaminating / non-delaminating

laminates among a group of thirty one laminates of different stacking sequences. For these

laminates values of DMC; ranged from 0.32x10-5(in)3 to 37.88x10-5(in)3. The test data
showed that laminates with DMC; < 10.23x10-3(in)3 did not show any signs of delamination.
The data indicate that for a given material system there is a critical DMC below which

delamination is unlikely. This aspect of DMC has a potential of being used to determine

stacking sequences of designed laminates which have DMC; less than the critical value. The
concept of determining the stacking sequence for designed laminates will be discussed in detail
in Section IV.

In the subsequent paragraph, we will use the DMC to evaluate quantitatively delaminating

tendency of the [( 6 /- 6),,/ 90, /(- /8 )] laminates. Maximization of DMC of cracked

and uncracked laminates for force and displacement loadings for a given set of m and n will
yield the angle 0 resulting in laminates with the maximum tendency to delaminate. For the
purpose of comparison, the angle 8 maximizing the mismatch of Poisson's ratios and the

Poisson's ratio of the laminates are determined.

Angle @ Maximizin lamination Tendencies for Various Criteri

10

DM/eg=m(4m+n)(12/2)(cd e,) (64)
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6.1 Maximizing DMC for uncracked 90 plies and N, loading
Using Equations 40 and N, = ( 4m+n ) 0,,, Equation 63 can be written as
DMC = -m(4m+n)2(t2/2) F; (65)
DMC; attains the maximum value when

dF;/d0 = d/dé { [ B4+ Bscos (20)+ Bgcos (49)]/

[B;+Bjycos(20)+B3ycos(40)] )} =0 (66)
On simplification Equation 66 yields
a;cos2(20)+bjcos(20)+¢cy=0 (67)
where
a;=2(ByBg-B3Bg)
b; =4 (B; Bg-B3By)
C;=(B;Bs+ByBg-ByBs-B3Bg) (68)
The solution of Equation 67 yields v
B;2=05Arccos [(-by £V (b;2-4a,¢,))/(22))] (69)
6.2 Maximizing DMC, for uncracked 90 plies and e, loading
Using Equations 41 and e, = e, Equation 64 can be written as
DMC, = G, (70
DMC, attains the maximum value when
dG,/d6 = d/d6 {[Byg+Bgscos (20)+ Bgcos (40)]/
[ B+ Bgcos(20)+Bgcos(46)] ) =0 an
On simplification Equation 71 yields
aycos2(20)+bycos (20)+¢,=0 (72)
where
ay=2(BgBg- Bg Bs) "
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b2=4(B7B6-BgB4) 2
C2=(B7B5+Bg B6'BBB4'B9BS) (73)

The solution of Equation 72 yields :

01.2=05 Arccos [(- byt V(b2-4a5¢5))/(22y)] (74) 3
6.3 Maximizing DMC for cracked 90 plies and N, loadin

Using Equations 57 and N, = (4m+n ) 6, Equation 63 can be written as

DMC = -m(4m+n)2(12/2) F (75)
DMC; attains the maximum value when :'
dFc,/d0 = d/de { [ B¢ + B¢scos (46)]/ J
[ B¢y +BSycos (20) + BS3cos (40)] }=0  (76) "
On simplification Equation 76 yields M
a3 cos2 (20) + by cos (20) +C3=0 @)
where ‘
a3 =2 B¢ B :-
b; = 4 ( BS; BSs - BS3 BS,) ;
c3 = B, BSs - BS, B, (78)
The solution of Equation 77 yields
81, =0.5 Arc cos [(- by + (b32 - 4a3¢3))/(223)] (79)
3
6.4 Maximizing DMC, for cracked 90 plies and ¢, loading E
Using Equations 58 and e, = e,, Equation 64 can be written as ] N
DMC, = G¢, (80) .
DMC, attains the maximum value when ._
dGe,/d® = d/d6 { | B¢, + Begcos (46)]/ 3
[ Bcg+ Begcos (26) + BSgcos (40)] }=0  (81) .
>,
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On simplification Equation 81 yields

‘ a4c082(20)+bgcos (20)+c4=0 (82)
‘ where
: a, =2 BS; BCq
2 by = 4 ( BS BSs - B BS )
:;.E ¢4 = B&;BC - BS, B, (83)
3 The solution of Equation 82 yields
™ 012 =0.5 Arc cos [(-bgtV (bs2-4a,4 C4 )/ (2ay)] (84)
,E
:Z 6.5 Maximizing mismatch of Poisson's ratios of 28,,and 90,, plies
' Poisson's ratio of 90, is minimum. For maximum mismatch of Poisson's ratios of 6,
-:-"_Z and 90y, Poisson's ratio of +8,,, ig = e, / €, , must be maximum.
\l Using Equations 18, 11, and 14 along with n = 0, Poisson's ratio g can be written as
» Mg = [ Ug - Uscos (48)]/
‘. [ U, - Uy cos (28) + Us cos (46))] (85)
, The Poisson's ratio, lg, attains the maximum value when
: dig /d8 = 0 (86)
E‘ On simplification Equations 85 and 86 yield
: a5c0s2(20)+bscos (20)+C5=0 (87)
.." where
as=2U, U3
bs=-4U3(U;+Uy)
' ) Cs=Uy(Uz+Uy) (88)
2 The solution of Equation 87 yields
7 81 2= 0.5 Arc cos [( - bs £V (bs? - 4 a5 C5)) / (2 as)] (89)
v.
5
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The Poisson's of [( 8/ - 8)y/ 90, /(- 6/ 0 )] laminates (using Equations 12,14, and \

18) is given by the following expression: ;:
Mo=ey/ex=Aa/Ay = [4m { Uy - Uzcos (48)) +n (Ug-U3)l/ E

[4m { U;-Ujcos (20)+ Uz cos (49)] «

#n (U; +Uy+Us)) (90) 3

The Poisson’s ratio, ug  of the laminates attains the maximum value when ) ‘_
dug/de = 0 1)

On simplification Equations 90, and 91 yield )E.

agcos2 (20 ) +bgcos (20) + Ccg=0 (92)

.

where
a6=8mU2U3
b6=-4U3[(4m+n)(Ul+U4)+nU2]

Rty N N A A

C6=Ua([(4m+n) Uy +(4m-n) Uy} 93) .-
The solution of Equation 87 yields ‘.::E
612 =0.5 Arc cos [(- bg V (bg2 - 4 a5 Cg )) / (2 ag)] (94) E
Equations 68,73,78,83,88, and 93 have a general form expressed as
812 =0.5Arccos [(-bxV (b2-4ac))/(2a) 3
where a, b, and ¢ for various delamination criteria are given in Table 1. :“.;

P

7. Delamination Criteria Evaluati
In paragraph 6 of this Section, six criteria were used to derive expressions to determine

the angle, 8, maximizing the delaminating tendency. An examination of these expressions

4
St e e e

shows that the criteria 6.2 and 6.6 are not independent.It can easily be shown that
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C; = nCg(U; +Uz+Uj) 95)
As a consequence of Equation 95, we have only to consider five criteria, namely, the maximum
mismatch of Poisson's ratios (para 6.5), and the maximum delaminating moment coefficients
for uncracked and cracked 90-degree plies subjected to force and displacement loadings.
To evaluate the five criteria, three studies were conducted. These studies are:

a. Numerical evaluation of the derived equations.

b. Finite element analyses of selected combinations of m, n, and elastic properties.

c. Experimental verification of the results of the numerical evaluation and the finite

element analyses.

.1 Numerical evaluation
The numerical investigation was conducted in two parts. In the first part, the parameters m
and n were varied to determine the derived parameters 6, i, 9, / 65, DMCg,and DMC, for
each of the five criteria. For the determination of the parameters assumed elastic constants

were:

E[; =19.26 x 106 psi

E,, = 1.32 x 106 psi

G, = 0.83 x 105 psi

Hip =035 (96)
The results of this study are tabulated in Tables 2 thru 6. The data presented is for criteria 6.1
thru 6.5. In the case of criteria 6.1, and 6.3 when N, loading is applied, only the values of
DMC; are shown.For criteria 6.2, 6.4, and 6.5 with e, loading, in addition to the related
values of DMC,, the corresponding values of DMC; are included. The data show the
following:

a. DMC for all the five criteria increases with the increasing parameters m and n.

b. DMC increases as m / n decreases.

15
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c. For the same ratio of m/ n, (for example my = 5, ny = 1, and my = 10, ny = 2) the

computed values of 0, p, and O’ey / 6, for all the criteria are the same. However, DMCy; =

:
DMCq; (my / my )2. :
In the second part, the parameters 6, y, 69, / 65, DMC, and DMC,, for the maximum E
delamination moments under N,, and e, loading and the maximum mismatch of Poisson's '
ratios were calculated, for a given set of m =5, and n = 2, and various values of E, Ej»,
Ga, and pyy. The results are tabulated in Table VII. The tabulated data show that:
a. The changes in the Poisson's ratio have minimal effect upon the DMC. :
b. Increasing the shear Young's modulus Gy, causes the DMC to decrease.
c. Increasing the transverse Young's modulus, E3j, causes the DMC to change but not ,
K
very appreciably. A
d. Increasing the longitudinal Young's modulus, E;, increases DMC dramatically.
7.2 Analytical-experimental evaluation of paragraph 7.1 —
The data of Tables 2 thru 6 indicate that for the same set of values of m and n, the five -
criteria yield different values of 6, u, 68, / 6, and DMC. To establish the credibility of the .
findings of Tables 2 thru 6, an analytical-experimental study was conducted. The analytical ,
part of the study is described in the subsequent paragraphs whereas experimental investigations
are included in Section III. :
The laminates selected for the analytical and experimental investigations were: <
. Type Stacking Sequence Plies Criterion
A [(49.8 /-49.8 )5/ 90} 22 6.1 \
B 1(30.8/-30.8 )5 / 90 2 6.2 .
C [(25.5/-25.5 )5 /90| 22 6.5 5
D* [(47.9/-47.9 )10/ 901, 42 6.1
The laminate D* is similar to the laminate A except for the number of m plies. .
3
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The specimen laminates A, B, and C were selected to discriminate between the
delamination initiation criteria. The specimen type D was selected to check the observed
increase in the delamination tendency (Table 2) as compared to that of the specimen type A
resulting from the increase in thickness.

To conduct the analytical studies, we modelled half of the width using constant generalized
strain elements as shown in Figures (2a) and (3a). The plies were modelled using single
elements through the ply thickness. Thus, 770 elements were used for specimens A, B, and C
and 1470 elements were used for specimen D. The nodal displacements, centroidal stresses

and strains were obtained for a longitudinal applied average stress of 100 psi. The interlaminar

stresses at z=0 were obtained by Lagrangian interpolation of the 6, values at the element

centroids. These 6, values were then extrapolated to estimate the maximum interlaminar

normal stress at the free edge.

The finite element analysis results are presented in Figures 2 thru 4 and Table 8. Figure 2
shows exaggerated views of the displacement fields in specimens A, B, and C. This figure
shows that for the same applied average axial stress of 100 psi, specimen A undergoes the
greatest distortion near the free edge, while specimen C undergoes the least distortion. These
results can be interpreted to indicate that specimen A has the greatest tendency for edge
delamination of the three specimens and the delamination will be initiated at the lowest applied
axial stress. Figure 3 shows the distortion of specimen D. By comparing the distortions near
the free edge of all the specimens, we conclude that laminate D has the greatest tendency for
edge delamination followed by laminates A, B, and C in descending order. This confirms the
predictions based upon DMC; for these specimens.

The conclusions drawn in the preceding paragraph are confirmed by the entries (column 1)
of Table 4 and the plots of 6, shown in Figure 4. Figure 4 and the Table 4 show that for the

same applied axial stresss, the value of normal stress G, at the free edge is the highest for

specimen D followed by specimens A, B, and C. Both the distortions and the values of normal
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stress O, near the free edge of the specimens confirms the delamination tendency predicted by

DMC,.

>

The delamination moment coefficients (based upon stress) for laminates A, B, C, and D

are 48.67, 27.43, 19.72, and 109.3 x 105 (in)3 (Table 2 for Criteia 6.1, Table 3 for Criterion

. WU S

6.2, Table 6 for Criterion 6.5) respectively, and the corresponding normal stresses o, at the

free edges of the specimens are 107.74, 67.65, 51.12, and 126.22 psi (Table 8). The ratios of . -
DMCs are 2.48 : 1.39 : 1.0 : 5.54 while the ratios of the normal stress 6, are 2.11:1.32:1.0:

2.47.The ratios of DMC; are consistent with the ratios of the normal stress 6, for specimens A,

B, and C. The results for specimen D show a different trend. The delaminating moment in a

laminate is resisted by the normal stresses ., and the shearing stresses T,,. The shearin
y 2 g zy g

stresses obtained by the finite technique for all the four laminates A, B, C, and D are tabulated ¥,

in Tables 9 thru 12. The tables show the shearing stresses in elements relative to free edges

k \‘I'h:

and mid planes. The discrepancy between the normal stress ratios and the DMC; ratios

observed above may be due to the fact that the DMC approach ignores the presence of the

shearing stresses while the finite element method does not.

»

To evaluate residual thermal curing stresses present in cured laminates with and without

applied loads, it is assumed that:

(a) Thermal and elastic properties remain unchanged during the cooling process. ~

(b) Re-distribution of thermal stresses in composites due to the presence of the matrix does
not occur.

(¢) Young's moduli of elasticity are the same as in Equation 96.

(d) Temperature change is equal to -250° F.

(e) CoefTicients of linear expansion in the fiber oy, and transverse direction oy are -0.2 x

106 and 16.0 x 10-6 in / in per °F respectively.
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’S In this study, m assumes values 1, 5, 10, 40, and 100, and n assumes values 1, 2, and 4.
The criteria used are 6.1, 6.2, and 6.5, namely, maximizing DMC for uncracked 90 plies with

) :: N, loading, maximizing DMC, for uncracked 90 plies with e, loading,and maximizing

o mismatch of Poisson's ratios of 8, and 90,, plies. The results of the investigation are

_ summarized in Tables13 thru 15. The tables contain thermal stresses (distinguished by T) in
| ' angle and 90 plies and DMC in X and Y directions.

.; From the tabulated data (Tables 13 thru 15), we find the following trends in the cured and

; unloaded laminates:

_ \ (a) The stress 69T, is compressive for all values of m and n for all the three design

': conditions, namely, criteria 6.1, 6.2, and 6.5 which causes the DMC to be negative.This

& indicates that cured laminates corresponding to the three criteria are unlikely to delaminate along
the edges normal to X-axis.

(b) The effects of stresses 68T, and 6%0T, acting upon edges normal to Y-axis appear to be
‘ different for the three criteria. In the case of the condition of the maximum mismatch of

“'$ Poisson's ratios, the stresses 09Ty and 090Ty are tensile and compressive respectively. For

\‘é this condition the laminates have a tendency to delaminate along edges parallel to X-axis. This
) tendency increases with thickness of the laminates. A similar trend is seen for Criterion 6.2. It
-. is less severe for m < 10, but for m > 40 (n <4) this condition tends to create delamination

: conditions of magnitudes similar to Criterion 6.5. For Criterion 6.1, two trends are observed.

' In the case of m<10), the stresses 0® Ty and 690T, are compressive and tensile respectively
except form = 10 and n = 1. Within this range, laminates are less likely to delaminate under

: thermal residual stresses. However, for m > 40 laminates have tendency to delaminate but it is
: , far less severe than the one of the other two criteria.

2
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SECTION 111
EXPERIMENTAL INVESTIGATION
The experimental study was performed to validate the results obtained in Section II. '

This study is described in the following paragraph.

1. Materjal System

The material system used in the study was AS4/3501-6, graphite-epoxy, supplied by
Hercules Incorporated in the form of a 12-inch-wide prepreg tape roll. This supplied roll
(no. 29) belonged to the batch number 3233 fabricated in October 1984.

2. Panels and Cure Cycle
Using the manufacturer's recommended cure cycle, four panels were fabricated. The

four panels had the following stacking sequences:

Panel Stacking Sequence Plies .
A (£49.85/90 ) 22
B (£ 30.85/90 ) 22 'y
C (£25.55/90), 22 3
D (£47919/90) 42

The rationale for selecting the stacking sequences for the panels has been described in
Section I1. The panels (12 inches x 18 inches) were laid up using 12-inch wide prepreg
tape. After curing, the panels were subjected to ultrasonic through-transmission C-scan

inspection for flaws. The inspection did not reveal significant defects. G

3 S . »~
The cured and inspected panels were trimmed along their long edges and then tabbed

using straight-sided 2-inch wide glass-phenolic tabs. The tabbed panels were machined

from both edges into 1-inch wide specimens of dimensions shown in Figure 5. The
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matenial left over from the central region was used to determine the composition of the
panels by the nitnc acid digestion method. Table 16 shows that the panels were essennally
porosity free and had fiber volumes varying from 66 to 62 percent.

The specimens cut from the panels were designated as A-1, B-1, C-1, and D-1 thru A-
14, B-14, C-14, and D-14. The widths and thicknesses of the specimens were determined
at three locations using a flat-headed micrometer. The cross-section areas were determined
by averaging the measurements. These average cross-section areas were used to determine

the stresses from the loads.

4. Instrumentation

The following techniques were used to determine the onset of edge delamination:
() Strain Gage Rosettes Centrally mounted, back-to-back strain gage rosettes were used
on specimens A-1, B-1, C-1, and D-1. The rosettes provided strain data up to the
maximum applied loads, but failed to register the onset of edge delamination (Figures 6
thru 9). Hence, their use was discontinued in subsequent tests.
(b) Transverse Strain Gages Single element strain gages were bonded to three groups of
specimens at locations shown in Figure 10). These gages did register the onset of
delamination at the locations where they were bonded to the specimens (Figures 11 thru
30). Since edge delaminations initiate at random locations along specimen edges, the use
of transverse strain gages at a limited number of locations is of doubtful value. To get
meaningful results, transverse strain gages would have to be bonded at all locations along
the specimen length. Since this is uneconomical, the use of transverse strain gages was

i discontinued after three sets of tests.

(c) Cracked Silver Ink Instrumentation Cracked silver ink instrumention was used in some
of the tests. The edges of the specimens were coated with a brittle lacquer or hysol to
provide electrical insulation from the conducting graphite fibers. After the lacquer or hysol

dried, silver paint ink was used to draw a zigzag line along the specimen edge as shown in
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Figure 10. The ends of the conducting line were connected to a power source and a
buzzer. The silver paint line cracked upon delamination initiation, causing an electrical
discontinuity and sounding of the buzzer. This technique gave erratic results. Moreover,
the thin lacquer coating tended to provide some edge reinforcement and the delamination
tended to initiate along the uncoated edge. As a result, this technique was used in only
some of the tests (for example Figures 11b, 12b, 13b, and 14b).

(d) Acoustic Emission Instrumentation An Acoustic Emission Technology (AET) linear
Locator Model 3000 was used in most of the tests to monitor acoustic emission during
loading. Two acoustic emission sensors were mounted as close to the tabs as possible
(Figure 31). The RMS acoustic emission activity from the sensor near the upper grnp was
recorded as a function of the applied load. The acoustic emission from the region between
the two sensors was also recorded and stored at preselected load levels. Plots of both of
these activities are shown in Figures 32 thru 69. Since the instrumentation did not permit
continuous recording of the acoustic emission from between the sensors, only the RMS
acoustic emission from the upper sensor was used in data reduction. An arbitrary RMS
acoustic emission activity of 1000 counts was used as an indication of the occurrence of
damage. Isolated RMS acoustic emission events with more than 1000 counts were
assumed to correspond to matrix cracking. More than two RMS acoustic emission events
with at least 1000 counts corresponding to consecutive load points were taken as an
indication of the onset of edge delamination. This edge delamination initiation criterion was
used in all tests for which the acoustic emission monitoring instrumentation was used.

(e) Visual Observation To observe the onset of edge delamination, one edge of each
specimen was sprayed with Fluoro Finder FD-32 Developer, marketed by Testing Systems
Inc. The spray dried quickly to give a uniform white coating on the edge of the specimen.
This white coating provided an excellent background against which the edge delamination
could be seen. The coated edge of the specimen was monitored visually and the load at

which delaminations initiated was recorded manually. Since the reaction time of the
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observer (GPS) was slow in some tests, the stresses for delamination initiation determined

by visual observation are an upper bound. High resolution black and white macro

E: photographs were used to document the occurrence of matrix cracks in specimens from
: panels A and D prior to edge delamination initiation. The matrix cracks appeared as pits in
the white coating as will be discussed later.
‘ After the tests were completed, the edges of the specimens were photographed and the
- specimens were inspected using tetrabromoethane (TBE) enhanced x-ray radiography.
During the x-raying of the specimens, we discovered that the coating that was sprayed on
b the specimens left a residue that showed up in the x-ray negatives. All attempts to
E completely remove the residue proved futile and, as a result, the TBE enhanced x-ray
: photographs turned out to be useable, but of poor quality.
)
3 5. Testing and Test Data
The specimens were loaded in tension using a screw-driver test frame (INSTRON
_: Floor Model TT-115) with 1 inch-wide self-aligning wedge-action grips. The tests were
’ performed at a crosshead speed of 0.02 inches per minute at room temperature and ambient
humidity. The load, strain, acoustic emission, and cracked silver ink data were recorded
using an in-house data acquisition system. The data were sampled sufficiently often to give
a load resolution of 10 pounds. Most of the tests were conducted until delaminations were
- observed visually along one edge of the specimen. Some of the tests were terminated prior
' N to the onset of delamination to document the occurrence of pre-delamination damage.
.‘ The test results are summarized in Tables 17 thru 20, which give the specimen
: N numbers, cross-sectional areas, strains, and stresses for the initiation of edge delaminations
:t determined by transverse gages, cracked silver ink, acoustic emission and visual
y observation. The table also contains stresses for initiation of matrix cracking as determined
'_' from the RMS acoustic emission data and maximum applied stresses. Of all the techniques
‘ -: used, the acoustic emission method appear to be consistent and dependable. The average
3 23
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initial delamination stresses for laminates A, B, C, and D are 19.2, 23.3, 26.4, and 18.6
ksi respectively. The corresponding average initial matrix cracking stresses are 15.5,
21.7, 25.1, and15.3 ksi. These results are consistent with those obtained using DMC and
finite element techniques described in Section II.

Edge views of some of the typical specimens after and during tests are shown in
Figures 70 thru 75. Figure 70 is the edge view of specimen A-9 which was loaded to the
extent that a large delaminated section could be seen.Specimen A-13 (Figure 71) on the
other hand was loaded to the extent that the formation of black dots on white paint could be
observed during and after the test. Specimens B-9,and C-9 (Figures 72 and 73) did not
develop black dots. In both these specimens, slits were observed in loaded and unloaded
conditions. The behavior of specimens D-9 and D-14 (Figures 74 and 75) was similar to
that of specimens A-9 and A-13, i.e., the appearance of black dots prior to the formation of
longitudinal cracks. Enhanced x-ray photographs of the specimens discussed in this
paragraph are shown in Figure 76. In the figure extensive matrix cracking of specimens
type A and D can easily be observed whereas matrix cracking is barely visible in specimens

type B and C.
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SECTION IV
DISCUSSION OF RESULTS AND CONCLUSIONS

The analytical and experimental investigations of Sections II and III have yielded some
significant results. These results correspond to the following aspects of the siudies:

(a) Delamination moment coefficient (DMC) as the measure of delaminating tendency
of laminates.

(b) DMC as the technique to design a stacking sequence.

(c) Free edge failure modes.

1. DMC - The Measure of Delaminating Tendency of Laminates

Five distinct criteria have been developed for determining the angle that maximizes the
edge delamination tendency of (8, / 90, ) laminates. Of these criteria, three are based
on the assumption that matrix cracking does not occur in the 90-degree plies prior to edge
delamination. Criterion 6.1 maximizes stress based DMC;. It yields a laminate that
delaminates at the lowest applied axial load N,. Criterion 6.2 maximizes strain based
DMC,. This criterion is computationally equivalent to maximizing the Poisson's ratio of
the laminate. Criterion 6.5, maximizing the Poisson's ratio mismatch between the +0 and
90 degree sublaminates (Reference 9), gives a laminate that delaminates at neither the
lowest applied axial stress nor the lowest applied axial strain. This observation was

confirmed both experimently and numerically by finite element determination of the peeling

stresss O, near the free edge of the laminates designed in accordance with Criteria 6.1, 6.2
and 6.5.

Since Criterion 6.5 (Reference 9) has been used extensively since the mid-70s to
design delamination prone specimens, we tried to determine how it came about. Upon re-
examining the derivations, we found that the expressions of Reference 9 for delamination
moment agree with our expressions. For the sake of completeness, the derivations of

Reference 9 are reproduced in the following paragraph.
25
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Let us consider a laminate consisting of two sets of angle ply laminates (£8, and 8,)
having thicknesses h; and h, subjected only to the applied axial load N, (no thermal
loading). Using Equation 4, stress resultants (average axial stress 6,,) for the laminate are
given by

NP, =Apex+Apey

NP), = A]2 €x + A22 Cy
where
Ap=C8y hy +C92 hy
App=COy,hy +C2yy hy

Ay =CBly hy + C¥2p hy
and
NP =(h +hy) o,
Since there is no applied transverse load, we get
NPy =001, hy + 692, hy =0
From the above equations and Equation 4, we get
o¥ly =- (hy/hy)c¥2
=-(hy/hy) [COppex+CO2 ey ]
=-hy (hy +hy) 0o/ (A1Ag - AZyp)
| €245 COlyy . €82, €Oy,

=-hy (hy +hy) 65/ (A1A - AZyp)
[ V825 -v81;, ] CBy, CO2)y 97)
Equation 97 is exactly the same as the equation 9 of Reference 9 if we equate
V82 =v2p
VBl =vip
CB1%=Qly
C9257 =Q%,
C81y5=Q12
€92y, =Q?),
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In Reference 9, instead of actually maximizing the delamination momenit, it was

postulated that a large Poisson's ratio mismatch [ v82;, -v81,, ] between the angle ply units
tended to magnify the stress cely. An examination of Equation 97 shows that
maximization of the Poisson's ratio mismatch [ V82, -v81,, ] alone ignores C81,, C82,,
and ( A1jA9; - A2, ) which are also functions of 8, and 6,. This partial maximization of
the stress Gely leads to inconsistent results because it fails to yield maximum peeling
stresses.

The remaining two criteria, namely, 6.3 and 6.4 are similar to criteria 6.1 and 6.2
respectively except for the cracked and uncracked states of 90 degree plies. A perusal of
Tables 2 thru 5 indicates that cracking of 90-degree plies tends to increase the delamination

moment coefficients.

2. DMC - The Technique to Design a Stacking Sequence

In a laminate, ply orientations and their number are determined by design
requirements. The plies can be stacked in variety of ways in the laminate. In the case of
laminates with free edges, delamination is a possibility. For these conditions, the DMC
technique can be used to determine the stacking sequence with the least tendency to

delaminate before attempting the expensive finite element technique.

To illustrate the technique, les us consider a 24-ply laminate with (¥455,904,0() ply

orientations designed to have E,, = 10.17 x 106 psi and Hyy =0.34. These requirements

can be met by a variety of sequences. Of these, two typical sequences are:
(a) (345,90,,245,05,-45,45,05,-45,45,90,,-45,45)
(b) (£45,0,90,%45,04,90,-45,45,90,04,-45,45,90,0,-45,45)
The delamination moment coefficients computed at the interfaces of the plies of both the

sequences are shown in Table 21. From the data, we find that the maximum DMC; for the

sequence (a) and the sequence (b) are 1.83 x 10-5 (in)3 and 7.99 x 10-5 (in)3 respectively.

These maxima occur between plies 4 and 5 for the sequence (a) and between
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plies 11 and 12 for the sequence (b). Sequence (b) is more prone to delamination than the .
sequence (a). This tendency can also be seen in Figure 77 showing the deformed state [~
obtained by the finite element technique and the undeformed state of sequences (a) and (b).

The actual edge delamination will depend upon whether the DMC of the laminate is
greater than the critical DMC or not. For example in Reference 44, laminates with DMC

greater than 10.0 x 10-3 (in)3 delaminated before failure and the other did not. For the

material system of Reference 44, the critical DMC appears to have a value ( 8.0 to 10.0 ) x R
10-3 (in)3. If we apply the critical DMC to the laminates of Tables 2 thru 6, we find that the s
first two laminates in Table 2 and 3, the first one in Table 4, the first two in Table 5 and the é
first three in Table 6 have DMC values less than the critical one. It means that these Z
laminates will not delaminate before failure. One must have sufficient number of m and n :
plies to yield DMC value greater than the critical one. \
Hence, we find the DMC technique is a viable procedure for preliminary selection of
the stacking sequence in laminates. :
p
In this study four types of specimens A, B, C and D (paragraph 7.2,Section 1) were ’
tested under tensile loading. Typical failure modes observed are shown in Figures 70 thru
76. 2
Specimens B and C failed by splitting each of the laminates into two sub-laminates
approximately at the mid plane and without matrix cracking. The mid-plane splitting was
accomplished in a series of sieps with increasing load. : ]
The failure modes of specimens A and D were different. The onset of failure was \
marked by the appearance of dots along the mid plane. With increasing loads, the density _
of the dots increased till they collapsed into mid plane splits. It appears that the failure ;

process begins by matrix cracking. The local matrix cracking increases the tendency of the
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laminate towards delamination (para 1, Section 1V) and local delamination results in the

appearance of dots. This matrix cracking and delamination causes unloading of the fiber

tips and release of energy. During tests we observed that the formation of the dot was

accompanied by a whiff (seen on videotape) of the white powder being blown away locally
. from the painted edge of the specimens.

Specimens A and D, though having the greatest tendency to delaminate, have mixed
modes of failure (matrix cracking and delamination). On the other hand, in specimens B
and C initiation of delamination is not accompanied by matrix cracking. For the same
number of m and n plies the angle 0 for specimen A is greater than the angle 6 of
specimens B and C. Probably ( #40.0, / 90, ) laminates will satisfy the condition that
no matrix cracking occurs before initiation of delamination while having delamination
tendency greater than that of specimens B and C designed for Criteria 6.2 and 6.5. In the
following paragraph we examine the possibility of using ( £40.0p, / 90, ) laminates by

studying the data of laminates A, B, and C.

Laminates A, B, and C with the layup of ( 85/ 90 ) have initial matrix cracking

stresses 15.5, 21.7,and 25.1 ksi and delamination initiation stresses 19.2, 23.3, and

26.4 ksi (Tables 17 thru 19) respectively. These stresses were plotted (Figure 78) against

the experimental delamination and matrix crack initiation stresses as functions of £6. From

\Zniaie o s e oo dn oo oo amy

the plot, matnix crack initiation stress data was obtained for angles other than those

corresponding to laminates A, B, and C. Using SQS5 (point stress program), axial strains

pertaining to matrix crack initiation stress and DMC; data were calculated and plotted.

From Figure 78, we find that an angle slightly greater than 40 degrees will develop an axial

strain of 4000 1 infin. To prevent matrix cracking, we need to limit the axial strain to 4000

 in/in. The laminate with layup of (405 /90 ), is probably the best choice because it has

the greatest tendency to delaminate without developing mixed edge delamination modes of

failure.

-----------
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TABLE 2

Dependence of Angles; Delaminating Moment Coefficients; and

Laminate Poisson'’s Ratios on m and n for {(8 /-6 ), / 90, 15
Graphite-epoxy Laminates, Criterion 6.1

Plies  Uncracked 90-Degree Plies N, loading

m n 0 u o od/oyg DMC
M @ & (5) (6)
1 1 526 032 059 4.05
1 2 542 023 087 7.16
1 4 548 0.16 1.21 13.33
5 1 479 056 0.19 27.32
S 2 498 046 0.32 48.67
h) 4 520 035 051 84.71
10 1 465 064 0.10 59.27
10 2 479 056 0.19 109.30
10 4 498 046 0.32 194.68
40 1 45.1 072 003 256.34
40 2 456 0.69 0.06 498.46
40 4 465 0.64 0.10 948.35
100 1 447 074  0.01 652.52

100 2 45.0 073  0.02 1289.30
100 4 454 070 0.05 2519.79
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TABLE 3

Dependence of Angles; Delaminating Moment Coefficients; and
Laminate Poisson's Ratios onmand n for [( 6 /-0 ), / 90, I
Graphite-epoxy Laminates, Criterion 6.2

Plies Uncracked 90-Degree Plies e, Loading
m n 8 u od/oy DMC, DMC,
1 @ @ 4) &) (6) (7
1 1 343 050 034 15.85 2.37
1 2 372 033 054 24.36 4.46 ‘
1 4 397 020 083 38.47 9.16 |
S 1 287 096 0.1 132.04 15.26
S 2 308 077 018 219.04 27.43
S 4 334 056 0.30 344 81 48.95
10 1 273 112 006 299.91 33.06
10 2 287 096 0.11 528.14 61.06
10 4 308 077 0.18 876.15 109.71
40 1 260 128 002 135337 143.20
40 2 265 122 003  2592.12 278.22
40 4 273 112 006  4798.58 528.97
100 1 275 132 001 347856 364.79
100 2 259 129 001  6828.62 720.41
100 4 263 124 003  13181.40 1406.85
N
1
3
]
)
A
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TABLE 4

Dependence of Angles; Delaminating Moment Coefficients; and

Laminate Poisson's Ratios on m and n for [(0/-0 ), /90, |5

Graphite-epoxy Laminates, Criterion 6.3

Plies  Cracked 90-Degree Plies N, loading

m n 9 u  od/cp  DMC;
M @ 0 4) 5) (6)
1 1 549 028 0.68 4.68
1 2 578 0.19 1.i2 924
1 4 60.2 0.11 1.88 20.70
5 1 48.8 053 0.20 28.66
5 2 51.2 043 035 52.32
5 4 540 032 058 95.61
10 1 472  0.61 0.11 61.43
10 2 488 053 020 114.65
10 4 51.2 043 0.35 209.28
40 1 456 070 0.03 263.39
40 2 46.2 0.67 0.06 513.64
40 4 472 061 0.11 982.93
100 1 453 072 0.01 669.35
100 2 455 071 0.02 1324.02
100 4 46.0 068 005 2593.54
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TABLE 5

Dependence of Angles; Delaminating Moment Coefficients; and

Laminate Poisson’s Ratios on m and n for [(8/-8 ), / 90, 15
Graphite-epoxy Laminates, Crioterion 6.4

Plies Cracked 90-Degree Plies e, Loading
m n 0 p od/cy DMC, DMC,
M @ @ 4) ) (6) )
1 1 345 049 036 16.13 2.50
1 2 374 031 060 24 87 494
1 4 40.1 0.19 101 39.42 11.11
5 1 288 096 0.11 133.66 15.54
5 2 309 076 0.8 222.14 28.17
5 4 336 055 030 350.57 51.22
10 1 274 111 006 303.25 33.51
10 2 288 096 0.11 534.65 62.16
10 4 309 076 0.18 888.54 112.69
40 1 260 128 002 1366.91 144.72 -
40 2 265 122 003 2619.10 281.45
40 4 274 111 0.06 4852.00 536.24
100 1 257 132 0.01 3512.45 368.43
100 2 259 129 0.01 6896.35 727.89

100 4 263 124 003 1331654 1422.62




TABLE 6

Dependence of Angles; Delaminating Moment Coefficients; and
Laminate Poisson's Ratios on m and n for {( 6 /-6 ), /90, I
Graphite-epoxy Laminates, Criterion 6.5

i

“»

. Plies Maximum Mismatch of Poisson's Ratios
m n 0 p  od/c, DMC, DMC;
M @ 3 (4) S) (6) )
1 1 255 044 020 13.89 1.37
1 2 255 027 027 19.59 2.19
’ 1 4 255 016 036 28.77 4.00
5 1 25.5 094 0.86 129.02 12.50
5 2 255 073 0.3 206.82 19.72
5 4 255 050 0.18 307.00 2991
10 1 255 111 0.05 297.57 29.54
10 2 255 094 0.09 516.06 49.98
10 4 255 073 0.13 827.26 78.90 .
40 1 255 1.28 0.02 1352.50 138.81
40 2 255 122 003 2586.08 261.99 .
40 4 255 111 005 4761.19 472.66
100 1 25.5 1.32 0.01 3478.18 360.18
100 2 25.5 1.29  0.01 6825.76 702.56
100 4 25.5 124 0.02 13161.01 1339.90
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TABLE 12

Shear Stresses 1,, at Centroids of Finite Elements
Laminate D: (£47.85 /90 )¢*

Shear Stress Ty, psi at Centroids of Elements from the Left Free Edge
Elements Numbers from Left to Right

1 2 3 4 5 6 7 8
1 16.82 20.66 18.09 15.16 12.61 10.64 9.03 7.74
2 26.12  33.37 30.76  26.95 2340 20.35 17.78 15.63
3 399 1697 21.62 2222 21.25 19.73 18.07 16.46
4 1.64 7.81 12.91 15.47 16.38 16.36 15.84 15.07
5 0.81 4.29 7.91 10.51 12.05 12,78 12.99 12.86
6 0.48 255 5.06 7.23 8.80 9.81 10.37 10.62
7 0.29 1.60 3.39 5.04 6.44 7.48 8.19 8.63
8 0.17 1.02 2.24 3.54 4.72 5.68 6.41 6.94
9 0.09 0.64 1.50 2.48 3.44 4.24 4.98 5.52

Element Number Increasing from the Mid-plane

10 0.03 0.37 0.97 1.71 2.48 3.19 3.82 4.35
11 -0.02  0.17 0.58 1.12 1.73 2.33 2.89 3.38
12 -0.06 0.01 0.27 0.67 1.14 1.63 2.12 2.56
13 -0.10 -0.12 0.03 0.30 0.67 1.07 1.48 1.88
14 -0.13  -0.23 -0.18 0.01 0.28 0.61 0.95 1.30
15 -0.16 -0.33 -0.34 -0.23 -0.03 0.23 0.52 0.83
16 -0.19  -0.41 -0.48 -0.42 -0.28 -0.01 0.17 0.44
17 -0.21  -0.46 -0.57 -0.56 -0.47  -0.31 -0.11 0.12
18 -0.22  -0.48 -0.61 -0.64 -0.58  -0.46 -0.30 -0.11
19 -0.20 -0.45 -0.58 -0.63 -0.61  -0.53 -0.40 -0.24 ]
20 -0.13  -0.33 -0.46 -0.52 -0.53 -048 -0.39 -0.27 1
21 -0.01 -0.12 -0.21 -0.25 -0.26  -0.24 -0.20 -0.15

* Applied Axial Stress = 100.0 psi
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TABLE 21

Stacking Sequences and DMC of (+455 /90,4 / 01¢ ) Laminates

Ply Stacking Sequence | Stacking Sequence Il
Number Angle DMC; x 10-5(in)3  Angle  DMC; x 10-3(in)3
1 45.0 45.0
033 0.33
2 -45.0 -45.0
3 90.0 0.
1.83 2.66
4 90.0 90.0
0.65 16
5 45.0 45.0
=1.03 3.16
6 -45.0 -45.0
7 0. 0.
272 4.81
8 0. 0.
-3.40 81
9 0. 0.
-4.07 6.81
10 0. 0.
4.74 1.82
11 0. 90.0
-5.40 1.99
12 45.0 45.0
.74 1.66
13 -45.0 -45.0
=3.40 1.99
14 0. 90.0
4.74 1.82
15 0. 0.
-4.06 6.82
16 0. 0.
3.40 S5.82
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TABLE 21 (CONTD)

Stacking Sequences and DMC of (455 /904 / 01¢ ) Laminates

Ply Stacking Sequence 1 Stacking Sequence 11
Number Angle DMC, x 10-%(in)3>  Angle = DMC; x 10-5 (in)3
17 0. 0.
18 0. 0.
-2.03 82
19 -45.0 -45.0
-1.02 3,16
20 45.0 45.0
0.66 317
21 90.0 90.0
1.84 2.67
22 90.0 0.
134 134
23 -45.0 -45.0 |
0.34 0.34
24 45.0 45.0
0. 0.
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0.08291 x 105 in —~|

0.13091 x 103 in
(0.10321 x 105 in

WIDTH /2

57

lement Models of A, B and C Laminate Specimens

(a) Undeformed Model of A, B and C Laminates
(d) Deformed Model of C Laminate *

(c) Deformed Model of B Laminate *

(b) Deformed Model of A Laminate *

Figure 2. Finite F

* Applied Axial Stress of 100 psi
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(a) Undeformed Model
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(b) Deformed Model of D Laminate *

* Applied Axial Stress of 100 psi

Figure 3. Finite Element Model of Laminate D Specimen
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(a) Transverse Gage 3 (B) and
Acoustic Emission (C)
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(c) Transverse Gage 4
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